If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2=154
We move all terms to the left:
2y^2-(154)=0
a = 2; b = 0; c = -154;
Δ = b2-4ac
Δ = 02-4·2·(-154)
Δ = 1232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1232}=\sqrt{16*77}=\sqrt{16}*\sqrt{77}=4\sqrt{77}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{77}}{2*2}=\frac{0-4\sqrt{77}}{4} =-\frac{4\sqrt{77}}{4} =-\sqrt{77} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{77}}{2*2}=\frac{0+4\sqrt{77}}{4} =\frac{4\sqrt{77}}{4} =\sqrt{77} $
| 2(t-87)=t-76 | | 334x=11 | | x-26=44 | | 33x+3=32x+2 | | 4x+10=×+25 | | 32x+2=33x-3 | | -136+15x=7x+152, | | 2(3s+19)=14s-2 | | 10t=7t+30 | | x^2+11=300 | | y=11+4;(,3) | | 2t=7t-60 | | -3f+12+6f-10=47 | | 1.8=6c | | 1/4t=33/4 | | 2(p-24)=3p-99 | | -12.8=x/7-1.6 | | 13.2=4s | | 3(4x-3)=4x-17 | | 2x−5(3.5)=10 | | 2(2p)=p+42 | | -3(3x+3)=-51 | | 2(z-12)=z+15 | | 12x+27.50=407.50 | | 2(2y+6)=5y+10 | | 6/5k=−20 | | 2(-3p+28)=5p+12 | | 6/5 k=−20 | | 4^x+4^x^+^1+4^x^+^2=336 | | 2(-2s+27)=-3s+53 | | 72+12+24+x=180 | | 12-4x-7=41 |